

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Fluid Mechanics

Time: 3 hrs.

4

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	State Newton's law of viscosity and explain the types of fluid based on Newton's law with suitable sketch.	6	L2	C01
	b.	Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size $0.8m \times 0.8m$ and an inclined plane with angle of inclination 30° as shown in Fig. Q1 (b). The weight of square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. Thickness of oil film is 1.5 mm. 1.5 mm. Fig. Q1 (b)	6	L3	CO1
	c.	Explain surface tension with a sketch and obtain the expression surface tension on a following conditions: (i) Liquid droplet (ii) Liquid jet	8	L2	CO1
0.2	8	State and prove Pascal's law with a neat sketch	0	12	CO1
¥.=	h	A hydraulia prose has a rom of 20 cm diamator and a phone of 2 cm	0		
	0.	diameter and it is used to lift a weight of 30 kN. Find the force required at the plunger.	0	L3	COI
	c.	Explain the following terms with a help of sketch: (i) Absolute pressure. (ii) Gauge pressure. (iii) Vacuum pressure.	6	L2	CO1
		Module – 2			
Q.3	a.	List and explain the types of fluid flow.	10	L2	CO2
	b.	A 30 cm diameter pipe, conveying water branches into two pipes of diameters 20 cm and 15 cm. If the average velocity in 30 cm pipe is 2.5 m/sec. Find the discharge in 30 cm pipe. Also find the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.	10	L3	CO2
		Ø OR			
Q.4	a.	Obtain the expression for Navier-stokes equation using momentum equation.	12	L2	CO2
a	b.	For an incompressible flow, the velocity potential components is given by, $u = \left(\frac{y^3}{3}\right) + (2x) - (x^2y); v = (xy^2) - (2y) - \left(\frac{x^3}{3}\right)$ Obtain the expression for stream function and velocity potential.	8	L3	CO2

BAE/BAS303

1

		Module – 3	T		
Q.5	a.	Obtain Euler's equation of motion and obtain the Bernoulli's equation from	12	L2	CO3
		that.		12	CO2
	b.	A pipe of diameter 400 mm carries a water at a velocity of 25 m/s. The	ð	LS	COS
		pressure at the points A and B are given as 29.43 N/cm and 22.503 N/cm			
		respectively. The Datum head at A and B are 28 m and 30 m respectively.	1		
		Find the loss of head between A and B.			
		OR			
0.6	a.	An aircraft is flying with a propeller engine. The thrust developed by a	12	L3	CO3
		propeller 'T' depends on the angular velocity 'W', speed of aircraft 'V'			
		diameter of propeller 'd', dynamic viscosity ' μ ', density of air ' ρ ', and			
		speed of sound 'a'. Obtain the thrust developed by a propeller using			
		Buckingham's π -theorem. (Take (D, V, ρ) as repeating variable).			
	h	Evaluin about types of similarities in the model analysis and write the	8	L2	CO3
	D.	expressions			
		expressions.			
		Module – 4	10	T 2	COA
Q. 7	a.	Define and obtain the expression for the following :	10	LS	04
		(i) Momentum thickness (θ) .			
		(ii) Energy thickness (δ^{**})			
	b.	In a subsonic wind tunnel which is having a test section velocity of	10	L3	CO4
		50 km/hour on a flat plate of size 2 m long and 1 m wide. The density of air			
		is 1.15 kg/m ³ . The co-efficient of lift and drag are 0.75 and 0.15			
		respectively. Determine : (i) Lift force (ii) Drag force.			
		OR			
0.8	9	Obtain the expression for Drag force on a flat plate due to boundary layer	12	L3	CO4
Q.0	a.	and write Von-Karman momentum Integral equation.			
			8	1.2	CO4
	b .	Explain the following:	0		0.04
		(i) Laminar and Turbulent Boundary layer.			
		(ii) Kutta-Joukowsky meorem.			
		Module – 5	10	TA	COF
Q.9	a.	Obtain an expression for velocity of sound wave in a fluid. Also deduce the	10	L3	005
		relation for adiabatic process.			
	h	An aircraft is flying at a particular altitude of 15 km. At 15 km altitude,	10	L3	COS
		temperature is -50°C. The speed of the aircraft corresponding to Mach			
	2	number 2.0 Assume $K = 1.4$, $R = 287$ J/kg-K. Find the speed of the	1		
	1	aircraft			
		OR to the state and the state of the	10	1.3	COS
Q.10	a.	Calculate the stagnation pressure, temperature and density at the nose of the	10		000
		aircraft. The aircraft is flying at 600 kin/hour through the stationary and 1.11			
		which has a pressure of 8.0 N/cm (abs) and temperature of -10° C. Take			
		R = 28 / J/kg-K and $K = 1.4$			
	b.	Draw and explain the propagation of pressure waves in a compressible fluid	10	L2	COS
		and explain about Mach cone, Mach angle. Also mention the zone of action			
		and zone of silence.			

		2 of 2			
	./@i				
	Catto	Y			